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Abstl'lld-Two-dimensional equatiuns uf mUliun uf Jlielueleclric cryslal Jllale~. ohtained from the three
dimensional equations of linear piezoelectricity by expansion in power series of the thickness coordinate of
the plate. are solved for forced vibrations of electroded SC-cut quartz plates. Results of computations are
given for frequencies of simJlle Ihickness modes of vibralion. for the dispel'5ion of straight-cresled waves
and for frequencies of vibnltion of a slrip. along wilh ils dimensional ratios for minimal coupling of the
fundamental thickness-shear mode with overtones of flexure. face-shear and thickness-twist.

I. INTRODUCTION

A review of vibrational properties of doubly rotated quartz plates may be found in a recent
article by Kusters[l]. Solutions of the three-dimensional equations of piezoelectricity for the
simple thickness modes of vibration of doubly rotated plates appear in Tiersten's book[2) and
in a comprehensive article by Ballato[3). Simple thickness modes are those in which the
oscillatory displacements are functions of only the thickness coordinate of the plate. Solutions
of two dimensional plate-equations for doubly rotated quartz strips, in which the displacements
depend on a coordinate in the plane of the stip, were presented by Lee and Wu[4) for the
purely elastic case. Some of their results are extended, in the present paper, to account for the
effects of piezoelectric coupling and the mass of electrode coatings.

In the following Section the three-dimensional, linear equations of piezoelectricity are
exhibited. The equations are solved, in Section 3, for the simple thickness modes and the results
of computations of the first three frequencies are given for the electroded SC-cut. A brief
review of the derivation of two dimensional plate-equations by expansion in power series is
given in Section 4 and restricted to the first order in Section 5. The solution of the two
dimensional equations for the simple thickness modes and the solution of the equations
governing the correction factors for the simple thickness frequencies are described in Section 6.
Section 7 contains the derivation of the dispersion relation for forced, straight-crested waves in
the electroded plate and the graphical presentation of the results of computations of the
branches for the SC-cut. The final Section includes the solution for the forced vibrations of an
electroded strip with mixed edge-conditions and the graphs of portions of the frequency
spectrum. Also, in Section 8 is a sketch which transforms a frequency spectrum for mixed
edge-conditions approximately to one for free edges. The results exhibit discrete ranges of
dimensional ratios favorable to the avoidance of coupling of the fundamental thickness-shear
mode with flexure, extension and face-shear overtones and the associated activity dips. An
appendix contains formulas for computing the material constants of quartz referred to doubly
rotated axes along with the results for the SC-cut.

2. THREE·DIMENSIONAL EQUATIONS OF PIEZOELECTRICITY

We begin with a brief review of the three-dimensional, linear equations of piezoelectricity[2)
from which are to be deduced two-dimensional plate-equations and frequencies of simple
thickness modes which are required for the computation of correction factors appearing in the
two-dimensional equations.

The three-dimensional field equations are the stress equations of motion and the charge
equation of electrostatics:

(1)
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where p and the Tij , Uj and Di are, respectively, the mass density and the components of stress,
mechanical displacement and electric displacement.

The constitutive equations are

(2)

where the Cjjkh ekij and Eij are the components of elastic stiffness, piezoelectric strain constant
and dielectric permittivity, respectively. Sjj and Ej are the components of strain and electric
field which are expressed in terms of the Uj and the electric potential (J by

I
Sij = 2(Uj,i +Uj), Ei = - (J.i·

Combining (1)-{3), we have the equations of motion,

CjjklUk.li +ekij(J.kj = pilj'

eki;Uk,ij - Ei;(J,ij =0,

(3)

(4)

which can be derived from a variational principle, for a region V bounded by a surface S with
outward normal n:

(5)

where the t; and u are the surface traction and surface charge. K and H are the kinetic energy
and electric enthalpy densities:

from which

K
I ..

= 2PUiU j,
(6)

(7)

Upon substitution of (6) and (7) in (5), the latter can be converted to the variational equation
of motion:

which produces the field equations (1) and the boundary conditions

niTj; = t; or Ui =Uj on S,

where Ui is the surface displacement, and

(9)

(10)

where ~ is the surface potential. As an alternative to (9), a component of njT;; and the resultant
of Uj in the plane at right angles, or vice versa, may be specified.

3, SIMPLE THICKNESS·MODES

Simple thickness-modes of vibration of a plate are those in which the three components of
displacement are independent of the coordinates parallel to the middle plane of the plate.



Forced vibrations of quartz plates 14~

We consider an infinite plate bounded by surfaces at X2 =± b which are coated with
electrodes each of thickness 2b' and mass density p'. A uniform alternating voltage Veiwl is
applied to the electrodes so that the voltage drop across the thickness of the plate is 2V. The
response of the plate is independent of XI and X) whence (4), (in the reduced notation whereby
pairs of indices 11, 22, 33, 23 or 32, 31 or 13, 12 or 21 become 1,2,3,4,5,6, respectively) reduce
to

C(,(,Ul.22 + C26U2.22 + C46U).22 + e26l/J.22 = pu ..

C26U1.22 + Cn"2.22 + C24U).n + enl/J.22 =pill,

C46UI.22 + C24"2.22 + C44U3.22 + e24l/J.22 = pU),

e21>U 1.22 + e22U2.22 + e24U.'.22 - E22l/J.22 = O.

The boundary conditions (9) and (10), on X2 = ± b, become

or

C('('U1.2 + C26"2.2+ C46U3.2 + e26l/J.2 = + 2p'b'u ..

'26Ul,2 +'nU2.2 + '1.4U3.2+ en4J.2 = + 2p'b'U2,

'46U'.2 + C24U2.2 + C44"3,2 + e24l/J.2 = + 2p'b'Ul'

l/J = ± Veiwl
,

From the fourth of (11),

(11)

(12)

(13)

(14)

but the constant B may be omitted as a constant l/J produces no electric field,
Now, substitute (14) in the first three of (11) and get the same form of equations except with

cpq replaced by cpq, where

Thus:

Now, take

C66UI.22 +C26U2.n+ C46U3.22 = pu ..

C26" 1.22 +C22U2.22 +C2.U3.22 = pil2,

C46U 1.22 +C24" 2.22 +C44"3.22 = PUl'

(15)

(16)

and substitute in (16) to get

(17)

where

55 Vol. 20. No. 2-D

.;; ="'b, n-2 =nt••
2b2/ JII""" ,. - ,- Jc'f 'f r- ....... pq - p (,(,.

(18)
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The determinant o( the coefficients o( the Ai in (I8), set equal to zero, is a bicubic equation
in TJ with three roots T/l. j = 1.2.3. Then (17) can be extended to

3

"j =~ Ai; sin TJjX2
/=\

and (14) to

3

cP = ~ Ei~(euAlj + e22A2j + e24A3j ) sin T/jX2 + A.x2,
/=1

with eiwt omitted here and in the sequel.
For each TJ;. define

Then

"2 = ~ BjbCt2j sin TJ;X2,,

cP = ~ BjbEi1(eUCt6j + e22Ct 2j + e24Ct4j) sin T/jX2 + A.x2•
I

We may find Ct2j and Ct4; (rom the second and third o( (18) with T/ replaced by TJj:

( - -2 O-h +- -2 --2
Cn'IJj - }Ct2j C24'IJj Ct4j =- C26'IJj ,

• -2 +(- -2 o-h • -2C24TJj Ct2j C44TJj - }Ct4j = - C46'IJj ,

(rom which

Upon sUbstituting (25) in (23) and the result in the boundary conditions (13), we find

(361 Bl +(362B2+(363B3 =- e26V/bC61"

(321B I+ (3nB2+(3nB3 = - enV/ bC66,

(341B. + (342B2 + (343B3 = - e24V/bC66,

where

in which a and b range over 2, 4, 6 and i over 1,2,3; 8Gb is the Kronecker delta and

Le. R is the ratio o( the mass of both electrodes to the mass of the crystal.

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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The determinant of the coefficients of the B; in (26), set equal to zero:

14~

(29)

is a transcendental equation whose roots 0 give the frequencies of the simple thickness~modes.

Except for notation, division by cpq to make each element dimensionless and the additional
term 8ahR02

, which accounts for the inertia of the electrodes, (29) is the same as Tiersten's
equation (9.69), «(2], p.92).

For the SC-eut (see the Appendix) and R = 0.01, the first three roots of (29), converted from
the 0 of (19) to

are

O2 =1.7512

O. =1.0235
0(,=0.9304

(30)

(31)

where O2, 0., 0 6 give the fundamental frequencies of the essentially thickness~stretch, - twist, 
shear modes, respectively; "essentially" because each of the three modes has contributions
from all three components of displacement, Uh U2, U3, one of which predominates in each mode.

4. EXPANSION IN POWER SERIES

The tw~dimensional equations of motion of piezoelectric crystal plates, to be used in the
sequel, are deduced from the three~dimensional equations by a procedure based on expansions
in series of powers of the thickness coordinate of the plate. The process was developed in
stages: beginning in 1952(5], extended in 1962[6] and revised in 1972[7]. As revised, the start is
with expansions of mechanical displacement and electric potential in series of powers of the
thickness coordinate X2:

U - ~ X nu(n) "" - ~ X n",,(n)
i - "'" 2 i, 'I' - "'" 2 'I' ,

n n
(32)

where u1n
) and ~(n) are independent of X2' The three~mensional strain and electric field are,

from (3) and (32),

Bj = - ~.i = }: x2nB~n),
II

(33)

in which the two-dimensional strain and electric field of order It are

51!') =! (uIII) +uln) +(It + J)(~. ul"+1)+ ~ ·u lll+1h]'/ 2 /.1 1./ (1,2 / (12/ I J ,

B1") =- ~~i) - (It +1)8i2cP(n+l).

The kinetic energy density and electric enthalpy density of the plate are defined as

K =f~ K dX2, H=f~ H dx2,
-II -II

whence, from (6), (32) and (34),

(34)

(35)
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where
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K- -! '" '" B ·Imj·ln}- 2P~ ~ mtl ll j U j
m n

Ii =! '" '" B ('" SI,mlSln) - ··Elm)Eln )- 2 E,m)s,n)2~ iC.t "", ('lkl 'J k E'l' j eijk I jk
m II

Bmll = 2h lllfllH/(m +It + I). m+n even; O. m +It odd.

(36)

(37)

The constitutive equations of order It are

The variational equation of motion becomes

(38)

L f'1 dt J(T\i.l- nT~rl)+ BnT~n) - PL B,"nulm?Suln) dA
n Jlo A '"

+L (I dt J(OW- nD~n-1)+BnDln~&I>ln) dA
n JIll A

+L (II dt,( [(B"t ~") - ItcT~j~au ~n)+(B"dln ) - ncD~"~ocf>In~ ds =O. (39)
n )'0 ic

where the index c ranges over 1 and 3 only, s is the coordinate along the edge curve C.

(40)

and the face-tractions Tln>, face charges DIn). edge tractions tin) and edge charges dIn) are
defined by

TIn) B-'[ nT]h
j = n X2 2j -h,

tl") = B;' fl> x2n(n,Tcj )c dX2,
-I>

Finally, the field equations of order n are

Din' =B;I[X2nD21~h

dIn) =B;' fl> x~n(ncD..)c dx~.
-I>

(41)

TI~! - nTI'!-l) +B T~n) = p '" B u..~m)'j./2j nj ~mnj'
m

Dt;) - nD~n-1)+BnDln)=0,

with edge conditions, on C,

(42)

u~n) =a~n)
J j (43)

where u~") is the edge displacement of order n, and

(44)

where ~I") is the edge potential of order n. As an alternative to (43), a component of niTl~) and
the resultant of u1n) in the plane at right angles, or vice versa, may be specified. '
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5. FIRST ORDER APPROXIMATION

The equations of the preceding section are now to be restricted so as to exclude simple
thickness modes higher than the fundamental stretch, twist and shear modes-which involve
only terms of orders n = 0, 1. The components of strain and electric field, of these orders, are,
from (34),

S~(:l = S~Il) = u~l~l 2S~(~) =S~l) = u~t~~ +u\1l E~Il) =- q,~\J)

S~~ = S~OI = u~1l 2S~O? = S~O) = u~~~ + u~~\ E~O) = - q,ll)

S~W = S~OI = u~~~ 2S~~ = S~') = u~~l + u~1l E\lI) =- q,~~)

sW = S\1l = u\~\ 2SW = S~I) = u~~~ +2U~2) E\I) = - q,~:l

s!ii. = S~I) = 2U~2) 2SW = S~I) = u\~~ + u~~\ E~I) = - 2q,(2)

sW = S~I) = u~~~ 2SW = S~I) = u~~~ +2U\2) E~I) = - q,~~'.

(45)

(46)

The strain s!il. is associated with the second thickness-stretch mode-which is not to be
included. We set T~~ and a?) equal to zero so as to permit free development of sW without
contribution to the kinetic or potential energy. From (38),

(47)

so that we set

Write these two equations as

3T(I)/2b J - (SII) S(I) S(I) E(I)
ij - Cijkl kl - Cij22 22 +Cij22 22 - ekij k

and

(48)

(49)

(50)

respectively. Then substitute the expression for sW, in (50), for the sW outside the parentheses
in (49) and collect terms to obtain, in place of (47),

where

T Il) - (2b]/3)(CIIl S(I) e(l)E(I"ij - ijkf kl - kij k J (51)

e1kl.1 = ek" - ek22c "'2/C2"2.'I II '1--- (52)

It may be verified that (51) satisfies (48).
The remaining terms in (46) of order n = 2 are U\21, U~2) and q,(2). These are to be omitted and

(I) b' d f . D(I)eijk su stltute or eijk In i.

At this stage, the constitutive equations of the first order approximation are

TIll) - 2b( SIO) Elil"ij - Cjjkl lei - ekij k J, D((J) - 2b( SIll) EIIl»
i - eijk jk +Eij j , (53)

where

(54)
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In the reduced notation (53) are
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and the corresponding electric enthalpy density is

(55)

(56)

It is important that the simple thickness frequencies from the approximate equations match
exactly those from the three-dimensional equations. As the approximate equations now stand,
the match is not exact owing to the difterence between the exact trigonometric distributions of
displacements, from (23), and the approximate linear distributions from the early terms of (32).
To compensate, correction coefficients are inserted as multipliers of the thickness-stretch and
-shear strains S~O), S~O), S~O). Thus

where

S~O) -+ /CpS~) (not summed)

/C = {/Cp, P = 2,4,6
p 1, p = 1,3,5

(57)

(58)

and the three K p are to be determined so that the three simple thickness frequencies from the
approximate equations match those from the three-dimensional equations.

The revised electric enthalpy density is

where

Ii =b(c~~S~)S~) - E;jEjO)EIO) - 2ei~E~0)S~0')

+(b3/3)(c~~S~)S~) - E;jEjllE\ll - 2e~~E~I)S~'), (59)

and the S~) and Eln
) are

C(O) - K C
pq - Kp q pq' e(O) - e

kp - Kp kp (not summed) (60)

S\O) = u\~l

S~O) = U~ll

S~O) = u~~~

S(O) - u(O) +u(l)
4 - 2,3 3

S(O) - U(O) +U(O)
S - 1,3 3,1

S(O) - U(O) +U(l)
to - 2.1 1

E\O) = - I/> ~?)

E~O)= - 1/>(1)

E~O)= _I/>~) (61)

The constitutive equations are

T~) = aIi/as~) = 2b(c~S~)- e~E~O'),

T~) = aH/aS~) = (2b/3)(c~~S~1) - eC!E~'»,

DIOl =- oR/aElO) =2b(ej~)S~)+EijE\o'),

Djl) =- aR/aEjll =(2b3/3)(e~~)S~)+ E;IE\'');
(62)
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and, finally, the field equations are

Tlf,l +2bTlO) = 2bpulol ,

Tl1.l-·T~~)+(2b 3/3)TjI) = (2b 3/3)pull),
D~~) +2bD(O) =0,

D~Y - D~O)+(2b 3/3)D(1) = O.

149

(63)

The inclusion of the thickness-stretch mode, in (59H63), is what distinguishes them from
the equations in[7).

6. CORRECTION FACTORS

In this section the procedure is established for computing the values of the correction
factors Ka, a =2,4,6, so as to make the simple thickness-frequencies, from the first order
equations, the same as the corresponding ones obtained in Section 3 from the three-dimensional
equations.

To find the simple thickness-frequencies from the first-order equations, we set

(64)

in the equations of motion.
In general, from (41),

T~") =B-1[x "T .)b
1 "2 21-b

and, for electrode coatings of density p' and half-thickness b',

Then

TIO) =(2br l[+ 2p'b'uj):!:b = - Rpuj°>'

TIl) = (3/2b1[+ X22p'b'uj]:!:b = - 3Rpul1
)

where, again, R = 2p'b'/pb.
With (64) and (66), the stress equations of motion (63) reduce to

(T~O), T~O), T~o') = - (2b 3/3)(1 +3R)p(u~l), u~l), U~I')

D~O) =(2b3/3)D(I),

in which

T~) =2b(c:!u~1)+c~u~1) +c~u~1)+e~4>(I'),

T~O) = 2b(c~u~1)+c~u~1) + c~'2u~1) + e~4>(I'>.

T~OI = 2b(d~ull)+ C~U~II+c:'u111 + e~OJ4>(\).

D~O) =2b(e~u\l) +e~u~l)+e~'u~ll- £224>(1').

(65)

(66)

(67)

(68)

The last of (67) and (68) contribute to a formula for the current, per unit area, through the
crystal:

(69)
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..From (64) and the first three of (67) and (68), we find

(I - ,(F/Kh2)KhA ,0 + C26K2A20 + C46K4A 30 == - e2h V/ bCh6,

, A °+(- n-2/- 2) A ° - A ° V/bC2hK6 I C22 - K2 K2 2 +C24K4 3 =- en Ch6.

C46KhA ,0 + C24K2A 20 + (C44 - O//K/)K4A30 =- e24 V/ bCh6.

where

The determinant of the coefficients of the AjO, in (70), set equal to zero, yields

where

A = I/KlKlK62,

B = - (C22Kl + c44iCl + iCl)/iClKliC6
2,

C = (C44 - C~)/K22 + (C22 - c~)/iCl + (C22C44 - d4)/K/,

D =- (C22('44 +2('26C24C46 - C22C~ - c44ci6 - Ci4)'

The bicubic (72) must be satisfied by each of

fi/ =n/(1 +3R), a =2,4,6

(70)

(71)

(72)

(73)

(74)

where the no are the exact roots from (29). Thus, we have the three simultaneous, nonlinear
equations on the Ko :

We find, from (75),

Afi2
6 + Bfi2

4 +Cfi2
2+D=0,

Afi/ +Bfi/ +cfil +D=0,

Afi6
6 +Bfi6

4 +Cfi6
2 +D= O.

A =- D/filfilfi6
2

,

B = - A(fi2
2+fil +fi(2

),

c = A(filfil +filfi6
2+fi6

2fil)

(75)

(76)

and note that the right hand sides of (76) are independent of the Ko• From the third of (73) and of (76),
iC2 may be expressed in terms of iC4 and iC6 (and the no and cpq ); and this expression.may be used to
eliminate K2 from the second of (76). leaving that equation as a quadratic in l/iCl with coefficients
functions of K6' Then l/iCl can be obtained as the algebraicalIy larger root of the quadratic-a
function of iC6• say

(77)

With this and the third of (76), we may express K2 in terms of K6 alone, say

(78)

Upon substituting (77) and (78) in the first of (76), we have

(79)
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an equation on ;(6. alone, which may be solved. iteratively. for ;(6; following which ;(~ and ,(4

may be obtained from (77) and (78). For the SC-cut and R =0.01, we find

,(2 = 1.004933,

;(4 = 1.005039,

,(h = 1.005083.

(80)

7. DISPERSION RELATION

We consider, again, an electroded, infinite plate under a uniform voltage drop V ei.l/b across
the thickness; but. in addition to the forced, simple thickness-modes. of the preceding section.
we now permit variation of displacements along XI:

u(~) = Alb sin ~XI eiwt
,

u~O) = A 2b sin ~XI eiwt
,

u~O) = A 3b sin ~XI eho
',

1jJ(0) = A7b sin ~XI ei
"",

u\1) =A4 cos Exl ei
"",

u~1) = As cos ~XI eitol
,

u~1) = A6 cos ~Xl ehor
,

</1(1) = (V/b) eitol
•

(81)

When independent of X3, the stress-displacement equations become

T (O) - 2b[c(0)u(0) + c(O)u(l) + c(O)u(l) + c(O)u(O) + c(O)(u(O) + u(l)\ + e(O).I.(O) + e(20).I.(I),
p - pi 1.1 p2 2 p4 3 pS 3.1 p6 2.1 I J lp'l'.1 p'l' J.

T(I) =(2b 3/3)(c(l)u(\) + c(l)u(1) + c(l)u(1) + e(l).I.(ll\
p pI 1.1 pS 3.1 p6 2.1 Ip'l'.1 J,

D (O) = 2b[e~0)u(0) + e~O)u(l) + e~O)u(l) + e~O)u(O) + e(O)(u(O) + u(ll\ _ E. .1.(0) - E' .1.(1),
I 01 1.1 .2 2 .4 3 ,S 3.1 .h 2.1 I J .1'1'.1 .2'1' J,

D\I) = (2b3/3)(eWu~~1 + eWu\~1 + e\~)u~~l- EiI</I~:).

(82)

(83)

When these expressions and those for T~O) and T~I), from (66), are inserted in the equations of
motion (63). the displacement equations of motion become:

C
IO) (III + CIOIU(\) + C'OIU(l) + c(O)u(O) + c(0)(u(0) + u(l)+ e,O).l. 10) + e(II).I.(I) = (1 + R)pii lll)
IIU1.l1 12 2.1 14 3.1 IS 3.11 16 2.11 1.1 11'1'.11 21'1'.1 1

C
(O)u(O) + c(O)u(l) + c(O)u(1) + c(O)u(O) + c(O)(u(O) + u(\) + e(O).I.(O) + e(O).I.(I) = (1+ R)pii/O)
hi 1.11 62 2.1 M 3.1 6S 3.11 66 2.11 1.1 16'1'.11 26'1'.1 2

C
(O)u(O) + c(O)u(l) + c(O)u(l) + c(O)u(O) + c(O)(u(O) + u(l)+ e(O).I.(O) + e(O).I.(I) = (1+ R)pii W1
SI 1.11 S2 2.1 54 3.1 SS 3.11 56 2.11 1.1 IS '1'.11 2S '1'.\ 3

C
(l)u(l) + c(1)u(1) + c(l)u(1) + e(l).I.(I)
11 1.11 IS 3.11 16 2.11 11'1'.11

_ 3b-2[C IIl)U(0) + C(II) I' (I) + C(O)I,(I) + C(OIU(O) + c(O)(u(O) + u(ll\ + e(O).I.(O) + e(O).I.(\)] = (i + 3R)pii(l)
III 1.1 '.2 2 M 3 hS 3.1 hit 2.1 I J Ih 'I' .1 2h'l' I

C
(l)u'l) + c(\)u(l) + c(l)u(1) + e(l).I.(I) -3b-2[C 10)U(0) + C(OIU(1) + c,O)u(l) + C(OIU(() + C'1I1(U W1
hi 1.11 6S 3.11 66 2.11 Ih'l'.11 21 1.1 22 2 24 3 2S 3.1 2h ~.I

+ u\11 + e~~</I~~) + e~~</I(l1 = (I + 3R)pii~1)

- 3b -2[c~~)u~~1 + c~lu~1) + c~u\1) + c~~u\~l + c~(u~~l + U~I~ + e~~cP~~) + e~cP(l1 =(\ + 3R)pii~1)

e(ll)u,OI + e('~u(1l + e(Olu(l) + e(()lu (1I1 + e(Il)(u(OI + u(\)- E .1.(111 - E .1.(11_ DIll)
II 1.\1 I. 2.1 14 3.1 IS 3.11 Ih 2.11 1.1 11'1'.11 12'1'.\-

e lllu ll) + e(1lu(\) + e(\)u(1l -., .1. (1) 3b-2[e(0Iu(OI + e(Olu(\) + e(lI)u ll)
II 1.11 IS 3.11 I" ~.II "11'1'.1 - 21 1.1 22 2 24 3

+ e'O)u(O) + e(O)(u(O) + u(ll\ - E .1.(0) - E .1.(1 ) =D(\).
2S 3.1 26 2.1 I J 21'1'.1 22'1'

We first find a particular solution of (83) for the constant forcing term cP(\)o This is the same
as the solution for simple thickness modes, of the preceding section, except that the frequency
w need not be a resonance frequency. Then the amplitudes AIO, A2°, A3°may be obtained from
(70).

The complementary solution is found by substituting (81) into (83) with </1(1) zero. The eighth
of (83) may be set aside as it serves only at a later stage to yield the surface charge and the
current through the crystal. In the seventh of (83), D(O) is zero from symmetry; and the equation
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may be solved for A7:
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and used to replace A7 in the remaining six equations. The result is

where

(84)

(85)

in which

• t- R'ftz alz =C16t-1C6 an= CS6t-all =CII -

an =(C66t- - R'ftllCl)1C6 au::: CISt- az.4=C~6

- r R'ftz a14 =C16(1C6 a2S =C26(ICZall =CSS -

a.... ::: (C66 +Cllt- - ftZ/K6;K6 alS::: CIZ(KZ a26 =C46EIC4

ass::: (C22+ CMt- - ft2/K/)K2 a16::: C14(1<4

( • • E2 ft21 2)aM::: C.... +Css .. K4 K4

a34= CS6iK6 a3S::: c25iK2 a36 ::: c4siIC4

a4S::: (C26+ C16f)K2 a46 "" (C46 +CISf)K4 aS6 =(C24 +C~"'iK4 (86)

ftz =('l'I'z'12)(1 +3R){J)2/{J)o2, (J)oZ ='lT2c~4pb2, R' =3(1 +R)(1 +3R),

cpq ::: (cp'l- ejpeIJEII)/cM, cP'l =c~J/31<,.K~cfJI" (= {b. (87)

In (~'I'I' when p (or (Il::: t. 5. ti then r (or s)::: 2.4. ti respectively.
Resonance occurs when the determinant of the coefficients of the Aj , in (85), is equal to

zero:

(88)

This is a sextic equation in t- yielding a six-branched dispersion relation as illustrated in Fig. 1
for the SC-out and R ::: 0.01.

In Fig. 1, the ordinate is n as given in (30) and the abscissa is X =2{bl'l'l'. The six branches
are identified according to the behavior of the corresponding modes at long 'rave-lengths
(f-+O):

Fig. 1. Plot of dispersion relalion (88).
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F = flexure
FS = face-shear
E =extension

TSh = thickness-shear
IT = thickness-twist

TSt = thickness-stretch
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The computation of the roots of the sextic (88), for Fig. 1, required about 90 hr on the HP-85
microcomputer. In order to reduce the computation time for subsequent use in the interval
0.91 <n < 1.07, an approximation was introduced. In that interval, each of the six branches was
divided into three segments and a cubic, quadratic or linear curve, as appropriate, was fitted to
each of the eighteen segments so that the roots along each curve could be expressed explicitly.
For each frequency, the time for computation and storage of the six roots was thereby reduced
by a factor of about 1250. The result is illustrated in Fig. 2.

The equations of motion are satisfied by (81) and (64) for each of the ~n, n = 1... 6. Hence,
we can write

"u'O) =~ A'nb sin (~,.xl +E) ei<ol,
n-I

6

U~O) =~ A2nb sin (f"XI +E) eu",
n-I

6

U~O) = ~ Alnb sin (~nXI +E) e""',
n-I

"</>(0) = ~ A'nb sin (~nXI +E) ei<ol,
n=\

where E = 0 or 11'/2.

"u'l) = A,O+~ A.... cos (~,.xl +E) e""
n-I

"u~1) =A20 +~ A'n cos (~,.xl +E) ei<ol
n='

"U~I) = Al O+~ A6n cos (~,.xl +E) e"'"
n-I

</>(1) = (V/b) eu"" (89)

8. VIBRATIONS OF A STRIP

A strip, bounded by edges at, say, Xl =± a, may be subject to a variety of edge conditions.
The only one that can be attained physically without difficulty is the traction-free condition.
However, the simplest condition mathematically is one for which the six branches of the
dispersion relation are not coupled. In the present case, this can be satisfied by

a combination which is admissible according to (43) and (44). The conditions (90) are the

Q7=o

VI
I

f
99

T'h TTl TSh ~ FS F

I
Qt 1 (

IlI'Ia~ X Rea 1 X 2

Fig. 2. Portion of dispersion curves of Fig. I with expanded frequency scale.
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.analogue of those for the simply supported beam in the Bernoulli-Euler or Timoshenko beam
theory, in which only the bending moment T\') and the deflection u~(), of the functions in (90),
are present and required to be zero at the ends of the beam.

With (89), (90) can be satisfied by

sin ~na =0 (91)

for E = 0 and

(92)

for E = 7T/2 for each branch separately-for real ~n' Thus, the boundary conditions (90) can be
satisfied by (91) or (92), for real En and each n separately if

x = 2Enbl7T = mbla, m = 1,2,3... (93)

This equation and (88) can be represented graphically by replotting the real part of Fig. I or Fig.
2 with the reciprocals of the abscissae of each of the six curves (i.e. a plot of n vs almb) and
then multiplying the resulting abscissae by the integers m to produce a set of equally spaced n
vs alb curves (overtone branches) for each of the six replotted dispersion curves. The result is
shown in Fig. 3 for the range 0< alb < 24 and the frequency range of Fig. 2. The range
17 < (lIb < 23 is shown in Fig. 4 with the abscissa expanded by a factor of 4. The number~

following P, PS, E, TSh and IT, in Figs. 3 and 4, are the values of m, in (93), identifying the
order of the overtone. No thickness-stretch branches appear, as their ~ is imaginary in the
frequency range displayed.

The computation for the strip with free edges is more complicated; but the main effect on
the frequency spectrum, of the coupling of the modes and overtones at the free edges, is the
elimination of intersections .of overtone branches. The general features of the frequency
spectrum of the coupled modes can readily be sketched, without computation, over the grid of
the spectrum of uncoupled modes and overtones. Figure 5 is such a sketch on the background
of Fig. 4. If m odd or even has been chosen correctly for each set of overtones, the only error
in a sketch-such as in Fig. 5-is in the strength of the coupling; i.e. whether the coupled
branches lie close to the intersections (weak coupling) or far from the intersections (strong
coupling).

1.07
rf

",. ,

~ I~ !~ 1] ~~ r

N {".;
...... \ - T

~

1\ !\ """l .. ". •• T

:'-. ...

to-.

,\ :"

r\J
1\

'"
~

~T
~

.~.. \
1'1 \ ~\ \\. 91

.95

.99

1 . 13 '3

24

Fig. 3. Frequency spectrum of strip. with mixed edge-conditions (901. computed from (88) and 193).
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.99

QC'
o _ ,_I

.91

Fig. 4. Portion of frequency spectrum of Fig. 3 with expanded alb.

1,137

.99

. ::- 1
17 20

,a"b
23

Fig. 5. Frequency spectrum of strip with free edges. sketched. without computation. on grid of branches
illustrated in Fig. 4.

In both Figs. 4 and 5. it may be seen that there is an interval of alb. along the branch TSh-l
between F-24 and F-26. where there are no E and FS overtone branches. Halfway into that
interval. at about alb = 19.6. would be a favorable dimensional ratio for a minimum of activity
dip resulting from coupling of thickness-shear with flexure, extension and face-shear. Similar
ratios occur at alb =32.2. 44.8. 62.1, 71.5... ; again for R =0.01 and the SC-cut.
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APPENDIX

Formulas for material constants of doubly rotated quart: plates
a-Quartz has an axis of three-fold symmetry. say X3. and three axes of two-fold symmetry. one of which is designated

as X. in a right-handed. rectangular coordinate system Xi; i = 1.2.3. Rotate the Xi system a positive angle 4J about X) and
a positive angle 8 about XI to a new orientation Xi. The direction cosines. Ii;. of the Xi axes with respect to the X, axes:

are

III =cos 4>

hi =-sin 4> cos 8

hi = sin 4J sin 8

XI X2 X3
XI III 112 III

X2 hi h2 h3
X3 hi h2 133

b= sin 4>

h2 = cos 4> cos 8

132 = - cos 4J sin 8

113 =0
h3=sin8
h3 = cos 8.

(a)

(b)

The quartz plate is cut with its thickness parallel to X2 and a pair of edges parallel to XI.
The elastic. e",•. piezoelectric. e".. and dielectric. f rs• constants. referred to the rotated axes Xi. expressed in terms of

the constants e?jk. e?jk. E~. referred to the axes Xi. are

c",. = cl\.,lril'~lll",.

e", = e?;tlril,;I'l.
ers=E?;lril'i.

summed over repeated indices i. j. k, I. For a-quartz.

e~=c~l. e~=c~3. C~=-C~4=-C~. c~5=e~. c~=(e~l-c~2)12.

~=eL=~=~=&=&=&=&=~=L

t~. =- e~2 =- e~b. e~. = - t~5.

t~3 =e~5 = e~b =e~1 =e~2 =t~) = t~. =e~1 = e~2 =t~3 =elJ. = e~\ = e~ = O.

E~I = E~. E~2 =E~3 = E~I = O.

Thus. we have. from (c) and (d).

e",. = C~.[/'I',d"'.1 + ',2',21,2'.2+~ (1''''2 +IrIl,,)(l1I1.2+1,21.,)]

+C~2[1,,1,11,21.2+"21.21,,1.1- ~ (/,,1'2 +"21, ,)(//11.2+ ',2'.,]

+('1)(/,tl,II,)1.3 +"3113',,1.1+ ',21,2',31.) +1'311l1'2Id

+ c~.[(I,tl'I-I,zI'2}(I'21.3 +1'31.2} +(1"I.t-I'21.2)(1'21'3 +1,31d
+(/,31,1 +1,11,3)(1/11.2+Id.l) +(/,.1,2 +"21''>(/'31. 1+1,,1.3)]

+ ('~)(/,I'3 + '1l'.3)
+cU(l,211l +1'31.v(/'21.3 +,131.2) +(1'31" +1,.1,))(1131., +I, ,'.3)].

ers, = e~I(",I'lllI - ',11.21,2 -1'2" 11'2 -1,2Idl/l)
+ e~.(I'II'2113+l,tl'31'2 -1'211l1" -1,21,11,3),

Ers = E~I(/"I.I +1,21.V +E~3143I'3.

Bechmann's values for a-quartz are[S}

e~1 = 86.74 C~4= -17.91 e~1 =0.171 e1. = -0.0406

(e)

(d)

c~=57.94

in units of 10'Nlm2• Clm 2and m-'2f7m for the e~4' e~ and E~, respectively.
For the SC-cut quartz plate (l/I = 21.93°. 8 = 33.93°). the constants are listed in Table \.
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Table I. Doubly·rotated quartz plate

CONSTANT UNITS
(:p'I.=ELASTlC ::.TIFFNESS· 10"9 N/m:::
Eip=PIEZOELECTRIC CONSTANT: C/m~

Kij=DIELECTRIC CONST:10 A -12 F.'m

e11= 86.7400000001
Cl~= 1.71298689814
C13= 17.177013102
C14=-.484711423
C15=-13.5533039091
C16=-9.1177467817
C22= 115.702789532
C23=-3.8751539075
C24= 8.8720683789
C25= .8851190534
C26= 18.8309418361
C33= 109.807518283
C34= 3.3715867534
C35= 12.6681848557
C36=-9.71319505441
C44= 42.1548460928
C45=-9.71319505431
C46= .88511905334
C55= 59.1161712855
C56= 5.59622323258
C66= 38.7038287147

El1= 7.01240600627E-2
E12=-8.58822822078E-2
E13= 1.57582221448E-2
E14= .017175794557
E15= 8.70538637456E-2
E16=-.129403404157
E21=-.129403404157
E22= 8.90858979159E-2
E23= 4.03175062407E-2
E24=-5.99309706679E-2
E25= 6.04272390907E-2
E26=-2.94726979707E-2
E31= 8.70538637458E-2
E32=-5.99309706681E-2
E33=-2.71228930779E-2
E34= 4.03175062408E-2
E35=-4.06513620922E-2
E36= 1.98272390908E-2

K11= 39.21
K22= 39.7770473805
K23= .8429018334
K33= 40.4629526195
K12=K13=0
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